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1. Dataset influence (intrinsic to the data)
2. Biases in the AAG predictions (dependent on the method design)

3. Proper evaluation of the performance (human behaviour)
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ProTherm is a collection of numerical data of thermodynamic parameters
including Gibbs free energy change, enthalpy change, heat capacity change,
transition temperature etc. for wild type and mutant proteins
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. - . Python 2.7.11: /usr/bin/python2.7
<type 'exceptions.KeyError'> Fri Feb 17 23:00:09 2017

A problem occurred in a Python script. Here is the sequence of function calls leading up to the error, in the order they occurred.

in ()
386 df3 = dfl.loc[ (dfl['muta'].str.contains(mutal,case = False,na=False))& (dfl['Type mutation'].astype(int)== 1)]
=> 388 df3 = dfl.loc[pd.to numeric(dfl['Type mutation'].str.extract('(\d+)')) == 1 & ~dfl['muta’'].str.contains('wild',case =
EE!Z elif mutation type == 'Double’
390 print"here
df3 = E| 1pty D|l |F| | m ms: [] Index: [], df1 = NO. PROTEIN ...2143,2144,2145,21... [25823 rows x 48 « 'u| ms | dfl.loc = |-;.._||~.;_1 e ._l_u::u-_
from '/usr/local/lib/python2.7/site-packages/pandas/__init__.pyc'>, pd.to_numeric = <function to_numeric | str undefined, case unde tin False =

in _ getitem__(self= NO. PROTEIN ...2143,2144, 2145 21...[25823 rows x 48
columns] key="Type_mutation')

1962 return self. getitem_multilevel(key)
=> 1964 return self. getitem column(key)

1966 def getitem column(self, :
self = NO. PROTEIN ...2143,2144,2145,21... [ 25! s x 48 columns], self._getitem_column = <bound method DataFrame._getitem_column of ...143,2144,214521... [25823
rows x 48 columns]>, l\e_\ = "Type_mutation'

in aatitam caliimnfcalf— WM DROYTETIN 271422144 D21AR D1 MNEA?2 raure v AR




1. Dataset influence (intrinsic to the data)

2. Biases in the AAG predictions (dependent on the method design)

3. Proper evaluation of the performance (human behaviour)
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May the available experimental measures
affect the prediction performance?
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Estimation of a predictor upper
bound



An experimental measure of
AAG depends on several factors

« AAG=Tf(pH, T,salts,C 1,C |,...)

In many cases we usually talk only of AAG which is
an average:

AAG =%, % Ty - T AAG(ij K,...1)

« Sometimes we consider the dependence of pH and T-:
AAG =1 (pH,T)



Problem when we compare different
measures of the same variation
Examples

1. In Keeler et al. (2009) the variation H180A in the human prolactin (pdb
code 2Q98) measured at T=25°C, but different pH,
AAG = 1.39 kcal/mol at pH=5.8;
AAG = -0.04 at pH=7.8

2. In Gribenko and Makhatadze 2007, the variation E3R in protein 1CSP,
6 different AAG values ranging from 1.4 kcal/mol to 2.4 kcal/mol were
measured at the same temperature (55°C) and pH (7.5) as function of
different salt concentrations.

3. In Ferguson and Shaw (2002) the variant L3S of the calcium-binding
protein S100B (1UWO) measured in two different starting conditions
and techniques, but at the same temperature (25°C) and pH (7.2)
yielded two
AAG = 1.91kcal/mol and
AAG = -2.77kcal/mol



Given the dataset (op5) and the
measure uncertainty (o) Is there an
upper bound to the prediction
performance?



Theoretical of estimation of an upper bound:
a “Gedankenexperiment”

Given N protein variations, we may think to perform a set of N
pairs of experiments ({x;}, {y;}), two for each variation.

Then we use one set of AAG measures as “predictor” and the
other as a set of experimental measures.

The idea Is that, given the experimental condition, the best
possible predictor is another set of experimental data
(considering the experimental uncertainty)



Theoretical estimation

The Pearson’s correlation:
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The upper bound of the Coefficient of
determination (R?) is even lower than the
Pearson with

Ruy = (R7) = 1—(Sc)/(St) =

2 —2 2
ohp —0. _1-7°/opp

ohp+7°  1+7%/0h



Expected Pearson correlation <p> vs. data average uncertainty (o) for
different values of dataset standard deviation opp

Pearson correlation {p)
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Experimental Datasets

From 0} = (F)
and using the experimental data we have

« S1: Theoretical estimation with ¢ = 1.04 and gp5=1.72
=>R=0.73

S2: Theoretical estimation with 6 =0.72 and gp5=1.57
=> R=0.83



Simulation with the experimental Datasets

8 7, S1 . . Scatterplot of two randomly
e S2 . L e . generated observations for a
given variation.
"-’:_J |
> After 100 runs the Pearson
£ correlation are
8 S1->0.74 £ 0.02
o =7 S2->0.84 +£0.02
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A :
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Multiple Mutations ?
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Comparison among methods on different
datasets

Performance of a method on different datasets
Evaluate method over-fitting

Effect on multiple mutations



1. Dataset influence (intrinsic to the data)

2. Biases in the AAG predictions (dependent on the method design)

3. Proper evaluation of the performance (human behaviour)



Biases in AAG predictions



If we change Alanine 35 with a Leucine,
IS the protein stability Increased or Decreased?

NAG, = AG, Mt - AG, mut

_ Mutant
Free Native

Energy

22



If we change Alanine 35 with a Leucine,
IS the protein stability Increased or Decreased?

ANAG, = AG, ™t - AG, nat

Native

Free Mutant
Energy
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Protein A = Protein B with variation Y25R
Protein B = Protein A with variation R25Y

AAG = - AAG
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experiment prediction

Usmanova,D.R., et al

. (2018)



Biases in AAG predictions

Structural Bioinformatics

Quantification of biases in predictions of protein
stability changes upon mutations

Fabrizio Pucci', Katrien Bernaerts 12, Jean Marc Kwasigroch ! and Marianne
Rooman

! Department of BioModeling, Biolnformatics & BioProcesses, Université Libre de Bruxelles, Roosevelt Ave. 50, 1050 Brussels, Belgium
“Biobased Materials, Faculty of Humanities and Sciences, Maastricht University, PO. Box 616, 6200 MD Maastricht, The Netherlands

Self-consistency test reveals systematic bias

in programs for prediction change of stability
upon mutation

Dinara R. Usmanova', Natalya S. Bogatyrevaz'3'4, Joan Arifio Bernad®, Ale-
ksandra A. Eremina®, Anastasiya A. Gorshkova’, German M. Kanevskiy®,
Lyubov R. Lonishin®, Alexander V. Meister'?, Alisa G. Yakupova?, Fyodor A.

Kondrashov'!, and Dmitry N. lvankov*'"’



Biases in AAG predictions

Structural Bioinformatics

Quantification of biases in predictions of protein
stability changes upon mutations

Fabrizio Pucci’, Katrien Bernaerts 2, Jean Marc Kwasigroch ' and Marianne
Rooman'

« The Ssym dataset is a manually curated selection of variations
from the ProTherm database.

» |t contains mutations with experimental AAG values for which
the 3D structures of both the wild-type and variant proteins
were solved by X-ray crystallography.

« Ssym consists of 684 variations, 342 are direct (reported in the
literature) and 342 are obtained by anti-symmetry, and
associated to the variant PDB structure
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Quantification of biases in predictions of protein
stability changes upon mutations

Fabrizio Pucci', Katrien Bernaerts 2, Jean Marc Kwasigroch ' and Marianne

Rooman!

Method T dir Fdir | Tinv Fiy | Tdir-inw '::':I!'-:' <&> :AAGAB+ AAGBA

PoPMusiC=™ | 158 | 048 | Le2 | 048 | -0.77 | 0.03
MAESTRO 136|052 | 209 | 032 | -0.34 | -058

FoldX 156 063 2,13 | 039 | -038 | -047
PoPMuSiC v2.1 | 1.21 | 063 | 2,18 | 025 | -029 | -0.71
SDM 1.74 | 051 | 228 | 032 | -0.75 | -0.32

1ISTABLE L10 | 072 228 | -0.08 | -0.05 | -0.60
[-[Mutant v3.00 | 1.23 | 062 | 232 | -0.04 | 0.02 [ -0.68
NeEMO 1LO8 | 072 [ 235 | 002 | 0.09 [ -0.60
DUET 120 | 063 | 238 | 013 | -021 | -0.84
mCSM 1.23 1061 | 243 | 0.14 | -026 | -091
MUPRO 0.% | 0.79 | 251 | 007 | -002 | -097
STRUM 1.5 | 075 | 251 | -0.15 ] 034 | -087
Rosetta 231 | 069 | 261 | 043 [ -041 | -069
AUTOMUTE | 1.07 | 0.73 | 2.61 | -0.01 | -0.06 | -099
CUPSAT 171 | 039 | 288 | 005 | -054 | -0.72

Table 1. Bras analysis of all the mutations belonging to the dataset 5™, The
standard deviations gy and gy and the values of (§) are in keal/mol. The
mizthods are ranked according to therr performance on the independent test set

of mverse mutabions, more specthically on the basis of oy,



Biases in AAG predictions

Bioinformatics, YYYY, 0-0

doi: 10.1093/bioinformatics/xxxx

Advance Access Publication Date: DD Month YYYY
Manuscript Category

Subject Section

Self-consistency test reveals systematic bias
in programs for prediction change of stability
upon mutation

Dinara R. Usmanova', Natalya S. Bogatyrevaz‘3‘4, Joan Arifio Bernad®, Ale-
ksandra A. Eremina®, Anastasiya A. Gorshkova’, German M. Kanevskiy®,
Lyubov R. Lonishin®, Alexander V. Meister'®, Alisa G. Yakupova’, Fyodor A.

Kondrashov'', and Dmitry N. lvankov* ™"~



Biases in AAG predictions

« dataset was built by Usmanova et al. 2018, by extracting
high-resolution pairs of proteins from the Protein Data
Bank (PDB) differing by one to ten amino acids.

« Large datasets, with 1000 pairs of protein structures
differing by one residue
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Subject Section

Self-consistency test reveals systematic bias
in programs for prediction change of stability
upon mutation

Dinara R. Usmanova1, Natalya S. Bogatyrevaz‘3‘4, Joan Arino Bernad5, Ale-
ksandra A. Eremina®, Anastasiya A. Gorshkova’, German M. Kanevskiy®,
Lyubov R. Lonishing, Alexander V. Meisterm, Alisa G. Yakupova?, Fyodor A.

Kondrashov'', and Dmitry N. Ivankov* """

Table 1. Bias for single substitutions

Program Bias, kcal/mol r (p-value)
FoldX 0.74 + 0.05 -0.15 (107'h
Eris .25 +0.11 20.39 (2-107)
Rosetta 2.08 +£0.12 0.06 (0.04)
I-Mutant 0.80 = 0.01 0.13 (310

Bias = (AAG g+ AAGg,)/2



An important property that a predictor has to
fulfil is the “variation” anti-symmetry :
AAG 5 = - AAGg,



DDGun: DDG Untrained baseline method

A way to implement the predictor anti-symmetry
IS to provide In Input to It only
anti-symmetric features



DDGun: DDG Untrained baseline method

Assuming that the profile p does not change for the mutant and the wild type
protein sequence, we can compute some feature scores such as

Evolutionary

(B=Blosum62) 20
Spl = i_lp(ai)(B(ai»m) — B(a;w))
Skolnick (Pg)
Local potential j+2 20
SSk = Z _ _ Z p(aj)(PSk(Wr a;) — Pg(m, ai))
J=—2Jj+0 =1

Hydrophobicity (K)
sup = p(M)K(m) —pW)K(w)

3D contact potential (Pgy)

SBV = Z Zzl P(aij)(PBV(W» a;) — Pgy(m, ai))

jel



DDGun: DDG Untrained baseline method

Anti-symmetry performances of DDGun on the Ssym data

set (Pucci et al, 2018, PopMusicSym)

Method

DDGun
DDGun3D
PopMusicSym

SDM
Maestro

FoldX

Performances
Direct Inverse
variations variations

Pearson r, RMSE

0.48, 1.47
0.56, 1.42
0.48, 1.58

0.51,1.74
0.52,1.36
0.63, 1.56

Pearson r, RMSE

0.48, 1.50
0.53, 1.46
0.48, 1.62

0.32,2.28
0.32, 2.09
0.39, 2.13

Anti-symmetry

IFdir-inv

-0.99
-0.99
-0.77

-0.75
-0.34
-0.38,

Bias <6>
(kcal/mol)

-0.007
-0.02
0.03

-0.32
-0.58
-0.47



DDGun: DDG Untrained baseline method

Performances on the 914 multiple site variation from Protherm.

Performances Anti-symmetry

Method Direct and Direct variations Inverse [ Bias <6>

Inverse Pearson r, RMSE variations dir-inv. - (kcal/mol)

Pearson r, RMSE Pearson r, RMSE

DDGun 0.44, 2.23 0.37, 2.23 0.37, 2.23 -1.00 0.00
DDGun3D 0.45, 2.27 0.39, 2.24 0.38, 2.25 -0.99 -0.007
Maestro 0.30, 2.59 0.55, 1.96 0.08, 3.10 -0.20 -0.92
FoldX 0.44, 3.10 0.41, 2.95 0.33, 3.24 -0.71 -0.21



1. Dataset influence (intrinsic to the data)

2. Biases in the AAG predictions (dependent on the method design)

3. Proper evaluation of the performance (human behaviour)



Evaluation problems:

1. many Variations in the same (similar) protein
2. many Variations in the same protein position

Classical mistake: random partition of training
and testing sets to fit the parameters or train
models



Problem of similarity between
training and testing sets
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Structural bioinformatics Advance Access publication October 13, 2011

Protein stability: a single recorded mutation aids in predicting the

effects of other mutations in the same amino acid site
Gilad Wainreb?, Lior Wolf2-*, Haim Ashkenazy', Yves Dehouck® and Nir Ben-Tal'+*

TDepartment of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, 2The Blavatnik School
of Computer Science, Tel-Aviv University, Ramat Aviv 69978, Israel and 3Bioinformatique génomique et structurale,
Université Libre de Bruxelles, Av Fr. Roosevelt 50, CP165/61, 1050 Brussels, Belgium

Associate Editor: Anna Tramontano




The case of mCSM

Wild-type
residue environment

mCSM signature

e

Pharmacophore
change

Pharmacophore @-...@@@

count

£~ &

Hyd Pos Neg Acc Don Aro Sul Neu Hyd Pos Neg Acc Don Aro Sul Neu

FEaEaC0E vEeadeEE

wild-type mutant

Mutation site

(*) mCSM: predicting the effect of mutations in proteins using graph-based
signatures
Douglas E. V. Pires, David B. Ascher, Tom L. Blundell, 2014

Train, Test
Predict

e U3
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Fig. 2. Regression results for mCSM signature pred

main paper
results

(*) mCSM: predicting the effect
of mutations in proteins using
graph-based signatures
Douglas E. V. Pires, David B.
Ascher, Tom L. Blundell, 2014



Table 2. Comparative regression experiments using the S350 data set

Method Number of Pearson’s Standard
predictions coefficient® error(kcal/mol)*

Automute 315 0.46/0.45/0.45 1.43/1.46/1.99
Cupsat 346 0.37/0.35/0.50 1.91/1.96/2.14
Dmutant 350 0.48/0.47/0.57 1.81/1.87/2.31
Eris 334 0.35/0.34/0.49  4.12/4.28/3.91
[-Mutant-2.0 346 0.29/0.27/0.27 1.65/1.69/2.39
PoPMuSiC-1.0 350 0.62/0.63/0.70 1.24/1.25/1.66
PoPMuSiC-2.0 350 0.67/0.67/0.71 1.16/1.19/1.67
SDM 350 0.52/0.53/0.63 1.80/1.81/2.11
mCSM 350 0.73/0.74/0.82 1.08/1.10/1.48

Note: Results directly obtained from Worth et al. (2011). Bold values highlight are

the best performing metrics.

4The three values given per column correspond, respectively, to the whole validation

set of 350 mutants, the 309 mutants for which a prediction was available for all
arilmcat ~F +15 4
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(*) mCSM:
predicting the effect
of mutations in
proteins using
graph-based
sighatures

Douglas E. V. Pires,
David B. Ascher, Tom
L. Blundell, 2014



Supplementary material

Table 9. Evaluation of predictive performance of mCSM for the S2648 data set in new low-
redundancy blind and cross validation schemes. Results are given for data set partiioning in
Protein (Prot) and Position (Pos) levels as described in Section 4.2,

Method Data set Validation Pearson’s coeff.” Std. error(Kcal/mol)*
mCSM 52648 5-fold (Pos) 0.54/0.69 1.23/0.9%)
mCSM S2648 5-fold (Prot) 0.5 1/0.66 1.2640.94

(*) mCSM: predicting the effect of mutations in proteins using graph-based
signatures
Douglas E. V. Pires, David B. Ascher, Tom L. Blundell, 2014



Summary:

* Training->r =0.82

e Random split->r=0.73

e CV for positions ->r=0.54
e CV for proteins ->r=0.51

(*) mCSM: predicting the effect of mutations in proteins using graph-based
signatures
Douglas E. V. Pires, David B. Ascher, Tom L. Blundell, 2014



Other examples with meta-predictors



Broom et al. 2017
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Computational tools help improve protein stability but with a
solubility tradeoff

Received for publication, March 3, 2017, and in revised form, July 11, 2017 Published, Papers in Press, July 14, 2017, DOl 10.1074/bcM117.784165

Aron Broom, Zachary Jacobi, Kyle Trainor, and Elizabeth M. Meiering'
From the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Edited by Wolfgang Peti
Tool MCC R Precision  Accuracy S.E.
% % kcal/mol
EGAD 0.34 0.52 50 74 1.61 0 :
FoldX 038  0.54 52 78 178 = 60% of the proteins
Rosetta-ddG 032  0.54 46 75 2.34  areinthe training of
CUPSAT 0.24 0.55 4 75 1.77  some predictors
Hunter 0.16 0.32 34 68 1.89 rained 500t
MultiMutate 0.19  0.54 32 62 2.3¢  Was lrainea on oU%
SDM 0.26 0.46 37 68 1.96  of randomly selected
PoPMuSiC 0.33 0.68 59 79 1.32 data and tested on
[Mutant3 0.14 0.51 41 75 1.52 0
MuPro 0.18 0.49 57 78 1.52 the other 50%

Meta-predictor  0.48  0.73 63 82 129  (similarity issue)




Rodrigues et al. 2018

Nucleic Acids Research, 2018 1
doi: 10.1093/narlgky300

DynaMut: predicting the impact of mutations on
protein conformation, flexibility and stability

Carlos H.M. Rodrigues’, Douglas E.V. Pires?" and David B. Ascher' 23’

1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University
of Melbourne, Australia, 2Instituto René Rachou, Fundacao Oswaldo Cruz, Brazil and 3Department of Biochemistry,

University of Cambridge, UK

« Dataset 52648

« Data presented in;:
- training on the data
- cross-validation with random split
- random generation on a “blind” set of 351 variations
from S2648, and trained on the remainder 2297
variants.

« Based on the output of DUET, SDM2, mCSM that were
TOTALLY trained on 52648



Please: test your model using data
(predictors) that have no sequence
similarity (trained on proteins
similar) to those of your test set!
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Definition of the objectives and
deliverables in the light of the 38%
cut



