## The effect of variations on protein stability: problems and issues

#### Piero Fariselli Dept. Medical Sciences, University of Torino piero.fariselli@unito.it



UNIVERSITÀ DEGLI STUDI DI TORINO





- 1. Dataset influence (*intrinsic to the data*)
- 2. Biases in the  $\Delta\Delta G$  predictions (dependent on the method design)
- 3. Proper evaluation of the performance (human behaviour)

## Datasets

**ProTherm** is a collection of numerical data of thermodynamic parameters including *Gibbs free energy change, enthalpy change, heat capacity change, transition temperature* etc. for wild type and mutant proteins

| \$                  | ProTherm<br>Thermodynamic Database<br>for Proteins and Mutants                  |
|---------------------|---------------------------------------------------------------------------------|
| Home 3DinSig        | Last Update Feb 2013                                                            |
| Go                  | ProTherm Search                                                                 |
| Advanced Search     | Please fill or choose necessary entries below, set display and sorting options. |
| Overview            | Explanations for the terms are <u>here</u>                                      |
| What's New          |                                                                                 |
| Statistics          | Eutry PDB Code Start Clear                                                      |
| Tutorial            |                                                                                 |
| More About ProTherm | Protein Source                                                                  |
| Cross-References    | Mol-weight To                                                                   |
| Acknowledgement     | Mutation To Single Double Multiple Wild Type                                    |
| Members             | Sec.Structure Helix Sheet Turn Coil                                             |
| Reference           | Accessibility  Any  Buried  Partially Buried  Exposed  ASA To %                 |
| Known Problems      | Measure Absorbance CD DSC Fluorescence NMR Others                               |
| Register            | Method 🔲 Thermal 🔲 Denaturants 📃 Others                                         |
| Contact us          | ин то                                                                           |



#### ProTherm: Thermodynamic Database for Proteins and Mutants

HOME BROWSE CONTACT US

#### <type 'exceptions.KeyError'>

#### Python 2.7.11: /usr/bin/python2.7 Fri Feb 17 23:00:09 2017

A problem occurred in a Python script. Here is the sequence of function calls leading up to the error, in the order they occurred.

| /var/www/cgi-bin/ProTherm/ProTherm.py in ()                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>386 df3 = df1.loc[ (df1['muta'].str.contains(muta1,case = False,na=False))&amp; (df1['Type_mutation'].astype(int)== 1)]</pre>                                                                                                                                                                                                                                                                                           |
| 387 else:                                                                                                                                                                                                                                                                                                                                                                                                                    |
| => 388 df3 = df1.loc[pd.to_numeric(df1['Type_mutation'].str.extract('(\d+)')) == 1 & ~df1['muta'].str.contains('wild',case =                                                                                                                                                                                                                                                                                                 |
| 389 elif mutation_type == 'Double':<br>390   print"here "                                                                                                                                                                                                                                                                                                                                                                    |
| df3 = Empty DataFrame Columns: [] Index: [], df1 = NO. PROTEIN2143,2144,2145,21 [25823 rows x 48 columns], df1.loc = <pandas.core.indexinglocindexer object="">, pd from '/usr/local/lib/python2.7/site-packages/pandas/initpyc'&gt;, pd.to_numeric = <function to_numeric="">, ].str <i>undefined</i>, case <i>undefined</i>, <i>builtin</i> False = False, na <i>undefined</i></function></pandas.core.indexinglocindexer> |
| /usr/local/lib/python2.7/site-packages/pandas/core/frame.py ingetitem(self= NO. PROTEIN2143,2144,2145,21 [25823 rows x 48                                                                                                                                                                                                                                                                                                    |
| columns], key='Type_mutation')                                                                                                                                                                                                                                                                                                                                                                                               |
| 1962 return selfgetitem_multilevel(key)                                                                                                                                                                                                                                                                                                                                                                                      |
| 1963 else:                                                                                                                                                                                                                                                                                                                                                                                                                   |
| => 1964 return selfgetitem_column(key)                                                                                                                                                                                                                                                                                                                                                                                       |
| 1965                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1966 def _getitem_column(self, key):                                                                                                                                                                                                                                                                                                                                                                                         |
| self = NO. PROTEIN2143,2144,2145,21 [25823 rows x 48 columns], selfgetitem_column = <bound 48="" [25823="" columns]="" dataframegetitem_column="" method="" of143,2144,2145,21="" rows="" x="">, key = 'Type_mutation'</bound>                                                                                                                                                                                               |
| /usr/local/lib/python2.7/site-packages/pandas/core/frame.py in getitem column(self= NO_DROTEIN_21/43.21/4.21/45.21_[25823.rows.y./8                                                                                                                                                                                                                                                                                          |

#### 1. Dataset influence (intrinsic to the data)

- 2. Biases in the  $\Delta\Delta G$  predictions (*dependent on the method design*)
- 3. Proper evaluation of the performance (*human behaviour*)



Università degli Studi di Padova



# May the *available* experimental measures affect the prediction performance?



Università degli Studi di Padova



# Estimation of a predictor upper bound

# An experimental measure of $\Delta\Delta G$ depends on several factors

- $\Delta\Delta G = f(pH, T, salts, C_i, C_j, ...)$
- In many cases we usually talk only of  $\Delta\Delta G$  which is an average:  $\Delta\Delta G = \sum_i \sum_j \sum_k \dots \sum_n \Delta\Delta G(i,j,k,\dots n)$
- Sometimes we consider the dependence of pH and T:  $\Delta\Delta G = f(pH,T)$

## Problem when we compare different measures of the same variation Examples

- 1. In Keeler et al. (2009) the variation H180A in the human prolactin (pdb code 2Q98) measured at T=25°C, but different pH,  $\Delta\Delta G = 1.39$  kcal/mol at pH=5.8;  $\Delta\Delta G = -0.04$  at pH=7.8
- In Gribenko and Makhatadze 2007, the variation E3R in protein 1CSP, 6 different ∆∆G values ranging from 1.4 kcal/mol to 2.4 kcal/mol were measured at the same temperature (55°C) and pH (7.5) as function of different salt concentrations.
- 3. In Ferguson and Shaw (2002) the variant L3S of the calcium-binding protein S100B (1UWO) measured in two different starting conditions and techniques, but at the same temperature (25°C) and pH (7.2) yielded two  $\Delta\Delta G = 1.91$ kcal/mol and  $\Delta\Delta G = -2.77$ kcal/mol

# Given the dataset ( $\sigma_{DB}$ ) and the measure uncertainty ( $\sigma$ ) is there an upper bound to the prediction performance?

#### Theoretical of estimation of an upper bound: a "Gedankenexperiment"

Given N protein variations, we may think to perform a set of N pairs of experiments ( $\{x_i\}, \{y_i\}$ ), two for each variation.

Then we use one set of  $\Delta\Delta G$  measures as "predictor" and the other as a set of experimental measures.

The idea is that, given the experimental condition, the best possible predictor is another set of experimental data (considering the experimental uncertainty)

# **Theoretical estimation**

The Pearson's correlation:

$$\langle \rho \rangle \cong \frac{\langle \sigma_{xy} \rangle}{\langle \sigma_x^2 \rangle} \frac{\sigma_{DB}^2}{\overline{\sigma^2} + \sigma_{DB}^2} = \frac{1}{1 + \left(\frac{\overline{\sigma^2}}{\sigma_{DB}^2}\right)}$$

The upper bound of the Coefficient of determination ( $R^2$ ) is even lower than the Pearson with

$$R_{ub}^{2} = \langle R^{2} \rangle = 1 - \langle S_{e} \rangle / \langle St \rangle \approx \frac{\sigma_{DB}^{2} - \overline{\sigma}^{2}}{\sigma_{DB}^{2} + \overline{\sigma}^{2}} = \frac{1 - \overline{\sigma}^{2} / \sigma_{DB}^{2}}{1 + \overline{\sigma}^{2} / \sigma_{DB}^{2}}$$

Expected Pearson correlation  $\langle \rho \rangle$  vs. data average uncertainty ( $\bar{\sigma}$ ) for different values of dataset standard deviation  $\sigma_{DB}$ 



# **Experimental Datasets**

From 
$$\langle \rho \rangle = \frac{1}{1 + \left(\frac{\overline{\sigma^2}}{\sigma_{DB}^2}\right)}$$

and using the experimental data we have

- S1: Theoretical estimation with  $\overline{\sigma} = 1.04$  and  $\sigma_{DB} = 1.72$ => R= 0.73
- S2: Theoretical estimation with  $\overline{\sigma} = 0.72$  and  $\sigma_{DB} = 1.57$ => R= 0.83

## Simulation with the experimental Datasets



#### Multiple Mutations ?



- Comparison among methods on different datasets
- Performance of a method on different datasets
- Evaluate method over-fitting
- Effect on multiple mutations

- 1. Dataset influence (intrinsic to the data)
- 2. Biases in the  $\Delta\Delta G$  predictions (dependent on the method design)
- 3. Proper evaluation of the performance (*human behaviour*)

# Biases in $\Delta\Delta G$ predictions

If we change Alanine 35 with a Leucine, is the protein stability *Increased or Decreased*?



If we change Alanine 35 with a Leucine, is the protein stability *Increased or Decreased*?



Protein A = Protein B with variation Y25R Protein B = Protein A with variation R25Y

 $\Delta \Delta G_{AB} = - \Delta \Delta G_{BA}$ 



Usmanova, D.R., et al. (2018)

# Biases in $\Delta\Delta G$ predictions

Structural Bioinformatics

# Quantification of biases in predictions of protein stability changes upon mutations

#### Fabrizio Pucci<sup>1</sup>, Katrien Bernaerts<sup>1,2</sup>, Jean Marc Kwasigroch<sup>1</sup> and Marianne Rooman<sup>1</sup>

<sup>1</sup> Department of BioModeling, BioInformatics & BioProcesses, Université Libre de Bruxelles, Roosevelt Ave. 50, 1050 Brussels, Belgium <sup>2</sup> Biobased Materials, Faculty of Humanities and Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

#### Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation

Dinara R. Usmanova<sup>1</sup>, Natalya S. Bogatyreva<sup>2,3,4</sup>, Joan Ariño Bernad<sup>5</sup>, Aleksandra A. Eremina<sup>6</sup>, Anastasiya A. Gorshkova<sup>7</sup>, German M. Kanevskiy<sup>8</sup>, Lyubov R. Lonishin<sup>9</sup>, Alexander V. Meister<sup>10</sup>, Alisa G. Yakupova<sup>7</sup>, Fyodor A. Kondrashov<sup>11</sup>, and Dmitry N. Ivankov<sup>4,11,\*</sup>

# Biases in $\Delta\Delta G$ predictions

Structural Bioinformatics

# Quantification of biases in predictions of protein stability changes upon mutations

Fabrizio Pucci<sup>1</sup>, Katrien Bernaerts<sup>1,2</sup>, Jean Marc Kwasigroch<sup>1</sup> and Marianne Rooman<sup>1</sup>

- The **Ssym** dataset is a manually curated selection of variations from the ProTherm database.
- It contains mutations with experimental ∆∆G values for which the 3D structures of both the wild-type and variant proteins were solved by X-ray crystallography.
- **Ssym** consists of 684 variations, 342 are direct (reported in the literature) and 342 are obtained by anti-symmetry, and associated to the variant PDB structure



# Quantification of biases in predictions of protein stability changes upon mutations

Fabrizio Pucci<sup>1</sup>, Katrien Bernaerts<sup>1,2</sup>, Jean Marc Kwasigroch<sup>1</sup> and Marianne Rooman<sup>1</sup>

| Method                  | $\sigma_{\rm dir}$ | $r_{\rm dir}$ | $\sigma_{ m inv}$ | $r_{\rm inv}$ | r <sub>dir-inv</sub> | $\langle \delta \rangle$ |
|-------------------------|--------------------|---------------|-------------------|---------------|----------------------|--------------------------|
| PoPMuSiC <sup>sym</sup> | 1.58               | 0.48          | 1.62              | 0.48          | -0.77                | 0.03                     |
| MAESTRO                 | 1.36               | 0.52          | 2.09              | 0.32          | -0.34                | -0.58                    |
| FoldX                   | 1.56               | 0.63          | 2.13              | 0.39          | -0.38                | -0.47                    |
| PoPMuSiC v2.1           | 1.21               | 0.63          | 2.18              | 0.25          | -0.29                | -0.71                    |
| SDM                     | 1.74               | 0.51          | 2.28              | 0.32          | -0.75                | -0.32                    |
| iSTABLE                 | 1.10               | 0.72          | 2.28              | -0.08         | -0.05                | -0.60                    |
| I-Mutant v3.0           | 1.23               | 0.62          | 2.32              | -0.04         | 0.02                 | -0.68                    |
| NeEMO                   | 1.08               | 0.72          | 2.35              | 0.02          | 0.09                 | -0.60                    |
| DUET                    | 1.20               | 0.63          | 2.38              | 0.13          | -0.21                | -0.84                    |
| mCSM                    | 1.23               | 0.61          | 2.43              | 0.14          | -0.26                | -0.91                    |
| MUPRO                   | 0.94               | 0.79          | 2.51              | 0.07          | -0.02                | -0.97                    |
| STRUM                   | 1.05               | 0.75          | 2.51              | -0.15         | 0.34                 | -0.87                    |
| Rosetta                 | 2.31               | 0.69          | 2.61              | 0.43          | -0.41                | -0.69                    |
| AUTOMUTE                | 1.07               | 0.73          | 2.61              | -0.01         | -0.06                | -0.99                    |
| CUPSAT                  | 1.71               | 0.39          | 2.88              | 0.05          | -0.54                | -0.72                    |

$$<\delta>=\Delta\Delta G_{AB}+\Delta\Delta G_{BA}$$

Table 1. Bias analysis of all the mutations belonging to the dataset  $S^{sym}$ . The standard deviations  $\sigma_{dir}$  and  $\sigma_{inv}$  and the values of  $\langle \delta \rangle$  are in kcal/mol. The methods are ranked according to their performance on the independent test set of inverse mutations, more specifically on the basis of  $\sigma_{inv}$ .

# Biases in $\Delta\Delta G$ predictions

Bioinformatics, YYYY, 0–0 doi: 10.1093/bioinformatics/xxxxx Advance Access Publication Date: DD Month YYYY Manuscript Category

Subject Section

#### Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation

Dinara R. Usmanova<sup>1</sup>, Natalya S. Bogatyreva<sup>2,3,4</sup>, Joan Ariño Bernad<sup>5</sup>, Aleksandra A. Eremina<sup>6</sup>, Anastasiya A. Gorshkova<sup>7</sup>, German M. Kanevskiy<sup>8</sup>, Lyubov R. Lonishin<sup>9</sup>, Alexander V. Meister<sup>10</sup>, Alisa G. Yakupova<sup>7</sup>, Fyodor A. Kondrashov<sup>11</sup>, and Dmitry N. Ivankov<sup>4,11,\*</sup>

# Biases in $\Delta\Delta G$ predictions

- dataset was built by Usmanova *et al.* 2018, by extracting high-resolution pairs of proteins from the Protein Data Bank (PDB) differing by one to ten amino acids.
- Large datasets, with 1000 pairs of protein structures differing by one residue



#### Subject Section

#### Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation

Dinara R. Usmanova<sup>1</sup>, Natalya S. Bogatyreva<sup>2,3,4</sup>, Joan Ariño Bernad<sup>5</sup>, Aleksandra A. Eremina<sup>6</sup>, Anastasiya A. Gorshkova<sup>7</sup>, German M. Kanevskiy<sup>8</sup>, Lyubov R. Lonishin<sup>9</sup>, Alexander V. Meister<sup>10</sup>, Alisa G. Yakupova<sup>7</sup>, Fyodor A. Kondrashov<sup>11</sup>, and Dmitry N. Ivankov<sup>4,11,\*</sup>

#### Table 1. Bias for single substitutions

| Program                              | Bias, kcal/mol                                                                                  | r (p-value)                                                                                               |
|--------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| FoldX<br>Eris<br>Rosetta<br>I-Mutant | $\begin{array}{c} 0.74 \pm 0.05 \\ 1.25 \pm 0.11 \\ 2.08 \pm 0.12 \\ 0.80 \pm 0.01 \end{array}$ | -0.15 (10 <sup>-11</sup> )<br>-0.39 (2·10 <sup>-49</sup> )<br>-0.06 (0.04)<br>-0.13 (3·10 <sup>-8</sup> ) |

Bias =  $(\Delta \Delta G_{AB} + \Delta \Delta G_{BA})/2$ 

An important property that a predictor has to fulfil is the "variation" anti-symmetry :  $\Delta\Delta G_{AB} = -\Delta\Delta G_{BA}$ 

#### A way to implement the predictor anti-symmetry is to provide in input to it only anti-symmetric features

Assuming that the profile *p* does not change for the mutant and the wild type protein sequence, we can compute some feature scores such as

Evolutionary  
(B=Blosum62)  
$$s_{Bl} = \sum_{i=1}^{20} p(a_i)(B(a_i, m) - B(a_i, w))$$

Skolnick ( $P_{Sk}$ ) Local potential

$$s_{Sk} = \sum_{j=-2}^{j+2} \sum_{j\neq 0}^{20} \sum_{i=1}^{20} p(a_j) (P_{Sk}(w, a_i) - P_{Sk}(m, a_i))$$

Hydrophobicity (K)

$$s_{Hp} = p(m)K(m) - p(w)K(w)$$

3D contact potential  $(P_{BV})$ 

$$s_{BV} = \sum_{j \in I} \sum_{i=1}^{20} p(a_{ij}) (P_{BV}(w, a_i) - P_{BV}(m, a_i))$$

Anti-symmetry performances of DDGun on the Ssym data set (Pucci et al, 2018, PopMusicSym)

|             | Perform                                 | nances                                   | Anti-symmetry        |                        |  |  |  |  |  |  |  |
|-------------|-----------------------------------------|------------------------------------------|----------------------|------------------------|--|--|--|--|--|--|--|
| Method      | Direct<br>variations<br>Pearson r, RMSE | Inverse<br>variations<br>Pearson r, RMSE | r <sub>dir-inv</sub> | Bias <δ><br>(kcal/mol) |  |  |  |  |  |  |  |
| DDGun       | 0.48, 1.47                              | 0.48, 1.50                               | -0.99                | -0.007                 |  |  |  |  |  |  |  |
| DDGun3D     | 0.56, 1.42                              | 0.53, 1.46                               | -0.99                | -0.02                  |  |  |  |  |  |  |  |
| PopMusicSym | 0.48, 1.58                              | 0.48, 1.62                               | -0.77                | 0.03                   |  |  |  |  |  |  |  |
| SDM         | 0.51, 1.74                              | 0.32, 2.28                               | -0.75                | -0.32                  |  |  |  |  |  |  |  |
| Maestro     | 0.52, 1.36                              | 0.32, 2.09                               | -0.34                | -0.58                  |  |  |  |  |  |  |  |
| FoldX       | 0.63, 1.56                              | 0.39, 2.13                               | -0.38,               | -0.47                  |  |  |  |  |  |  |  |

Performances on the 914 multiple site variation from Protherm.

|         |                                          | Anti-symmetry                        |                                          |                      |                        |  |  |
|---------|------------------------------------------|--------------------------------------|------------------------------------------|----------------------|------------------------|--|--|
| Method  | Direct and<br>Inverse<br>Pearson r, RMSE | Direct variations<br>Pearson r, RMSE | Inverse<br>variations<br>Pearson r, RMSE | r <sub>dir-inv</sub> | Bias <δ><br>(kcal/mol) |  |  |
| DDGun   | 0.44, 2.23                               | 0.37, 2.23                           | 0.37, 2.23                               | -1.00                | 0.00                   |  |  |
| DDGun3D | 0.45, 2.27                               | 0.39, 2.24                           | 0.38, 2.25                               | -0.99                | -0.007                 |  |  |
| Maestro | 0.30, 2.59                               | 0.55, 1.96                           | 0.08, 3.10                               | -0.20                | -0.92                  |  |  |
| FoldX   | 0.44, 3.10                               | 0.41, 2.95                           | 0.33, 3.24                               | -0.71                | -0.21                  |  |  |

- 1. Dataset influence (intrinsic to the data)
- 2. Biases in the  $\Delta\Delta G$  predictions (*dependent on the method design*)
- 3. Proper evaluation of the performance (*human behaviour*)

## **Evaluation problems:**

many Variations in the same (similar) protein
 many Variations in the same protein position

*Classical mistake*: random partition of training and testing sets to fit the parameters or train models

Problem of similarity between training and testing sets

#### BIOINFORMATICS ORIGINAL PAPER

Vol. 27 no. 23 2011, pages 3286–3292 doi:10.1093/bioinformatics/btr576

Structural bioinformatics

Advance Access publication October 13, 2011

# Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site

Gilad Wainreb<sup>1</sup>, Lior Wolf<sup>2,\*</sup>, Haim Ashkenazy<sup>1</sup>, Yves Dehouck<sup>3</sup> and Nir Ben-Tal<sup>1,\*</sup> <sup>1</sup>Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, <sup>2</sup>The Blavatnik School of Computer Science, Tel-Aviv University, Ramat Aviv 69978, Israel and <sup>3</sup>Bioinformatique génomique et structurale, Université Libre de Bruxelles, Av Fr. Roosevelt 50, CP165/61, 1050 Brussels, Belgium Associate Editor: Anna Tramontano

## The case of mCSM



#### (\*) mCSM: predicting the effect of mutations in proteins using graph-based signatures

Douglas E. V. Pires, David B. Ascher, Tom L. Blundell, 2014



## main paper results

(\*) mCSM: predicting the effect of mutations in proteins using graph-based signatures Douglas E. V. Pires, David B. Ascher, Tom L. Blundell, 2014

Fig. 2. Regression results for mCSM signature pred

Table 2. Comparative regression experiments using the S350 data set

| Method       | Number of predictions | Pearson's coefficient <sup>a</sup> | Standard<br>error(kcal/mol) <sup>a</sup> | results               |
|--------------|-----------------------|------------------------------------|------------------------------------------|-----------------------|
| Automute     | 315                   | 0.46/0.45/0.45                     | 1.43/1.46/1.99                           |                       |
| Cupsat       | 346                   | 0.37/0.35/0.50                     | 1.91/1.96/2.14                           | (*) mCSM:             |
| Dmutant      | 350                   | 0.48/0.47/0.57                     | 1.81/1.87/2.31                           | predicting the effect |
| Eris         | 334                   | 0.35/0.34/0.49                     | 4.12/4.28/3.91                           | of mutations in       |
| I-Mutant-2.0 | 346                   | 0.29/0.27/0.27                     | 1.65/1.69/2.39                           | graph-based           |
| PoPMuSiC-1.0 | 350                   | 0.62/0.63/0.70                     | 1.24/1.25/1.66                           | signatures            |
| PoPMuSiC-2.0 | 350                   | 0.67/0.67/0.71                     | 1.16/1.19/1.67                           | Douglas E. V. Pires,  |
| SDM          | 350                   | 0.52/0.53/0.63                     | 1.80/1.81/2.11                           | L Blundell 2014       |
| mCSM         | 350                   | 0.73/0.74/0.82                     | 1.08/1.10/1.48                           |                       |

main paper

*Note*: Results directly obtained from Worth *et al.* (2011). Bold values highlight are the best performing metrics.

<sup>a</sup>The three values given per column correspond, respectively, to the whole validation set of 350 mutants, the 309 mutants for which a prediction was available for all predictors. Finally, in the third column are the results for 87 mutants, a subset of the

## Supplementary material

**Table 9.** Evaluation of predictive performance of mCSM for the S2648 data set in new lowredundancy blind and cross validation schemes. Results are given for data set partitioning in Protein (Prot) and Position (Pos) levels as described in Section 4.2.

| Method | Data set | Validation    | Pearson's coeff.* | Std. error(Kcal/mol)* |
|--------|----------|---------------|-------------------|-----------------------|
| mCSM   | S2648    | 5-fold (Pos)  | 0.54/0.69         | 1.23/0.90             |
| mCSM   | S2648    | 5-fold (Prot) | 0.51/0.66         | 1.26/0.94             |

(\*) mCSM: predicting the effect of mutations in proteins using graph-based signatures Douglas E. V. Pires, David B. Ascher, Tom L. Blundell, 2014

#### Summary:

- Training-> r = 0.82
- Random split -> r = 0.73
- CV for positions -> r = 0.54
- CV for proteins -> r=0.51

(\*) mCSM: predicting the effect of mutations in proteins using graph-based signatures Douglas E. V. Pires, David B. Ascher, Tom L. Blundell, 2014



#### Other examples with meta-predictors

#### Broom et al. 2017

#### **BC** ARTICLE



# Computational tools help improve protein stability but with a solubility tradeoff

Received for publication, March 3, 2017, and in revised form, July 11, 2017 Published, Papers in Press, July 14, 2017, DOI 10.1074/jbc.M117.784165

#### Aron Broom, Zachary Jacobi, Kyle Trainor, and Elizabeth M. Meiering<sup>1</sup>

From the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Edited by Wolfgang Peti

| Tool           | MCC  | R    | Precision | Accuracy | S.E.     |                        |
|----------------|------|------|-----------|----------|----------|------------------------|
|                |      |      | %         | %        | kcal/mol |                        |
| EGAD           | 0.34 | 0.52 | 50        | 74       | 1.61     | 60% of the protoine    |
| FoldX          | 0.38 | 0.54 | 52        | 78       | 1.78     |                        |
| Rosetta-ddG    | 0.32 | 0.54 | 46        | 75       | 2.34     | are in the training of |
| CUPSAT         | 0.24 | 0.55 | 44        | 75       | 1.77     | some predictors        |
| DFire          | 0.43 | 0.64 | 49        | 76       | 1.84 .   | The Meta-predictor     |
| Hunter         | 0.16 | 0.32 | 34        | 68       | 1.89     |                        |
| MultiMutate    | 0.19 | 0.54 | 32        | 62       | 2.34     | was trained on 50%     |
| SDM            | 0.26 | 0.46 | 37        | 68       | 1.96     | of randomly selected   |
| PoPMuSiC       | 0.33 | 0.68 | 59        | 79       | 1.32     | data and tested on     |
| IMutant3       | 0.14 | 0.51 | 41        | 75       | 1.52     | the other 50%          |
| MuPro          | 0.18 | 0.49 | 57        | 78       | 1.52     |                        |
| Meta-predictor | 0.48 | 0.73 | 63        | 82       | 1.29     | (similarity issue)     |

## Rodrigues et al. 2018

Nucleic Acids Research, 2018 1 doi: 10.1093/nar/gky300

# DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability

#### Carlos H.M. Rodrigues<sup>1</sup>, Douglas E.V. Pires<sup>2,\*</sup> and David B. Ascher<sup>1,2,3,\*</sup>

<sup>1</sup>Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia, <sup>2</sup>Instituto René Rachou, Fundação Oswaldo Cruz, Brazil and <sup>3</sup>Department of Biochemistry, University of Cambridge, UK

- Dataset S2648
- Data presented in:
  - training on the data
  - cross-validation with random split
  - random generation on a "blind" set of 351 variations from S2648, and trained on the remainder 2297 variants.
- Based on the output of DUET, SDM2, mCSM that were TOTALLY trained on S2648

Please: test your model using data (predictors) that have no sequence similarity (trained on proteins similar) to those of your test set!

#### Contributors







Rita Casadio Emidio Capriotti Pier Luigi Martelli Ludovica Montanucci Castrense Savojardo





#### Project:



## Project:

|                   |                                                                           | Year I |     |       |     |      |                           |     |       |      |        | Year II |      |      |     |      |      |      |       |      |    |    |    | Year III |    |     |       |      |       |       |       |       |      |       |      |      |    |
|-------------------|---------------------------------------------------------------------------|--------|-----|-------|-----|------|---------------------------|-----|-------|------|--------|---------|------|------|-----|------|------|------|-------|------|----|----|----|----------|----|-----|-------|------|-------|-------|-------|-------|------|-------|------|------|----|
|                   | 1                                                                         | 2      | 1   | 3 4   | 5   | 5 (  | 3                         | 7   | 8     | 9    | 10 1   | 1 1     | 12   | 13   | 14  | 15   | 16   | 17   | 18    | 19   | 20 | 21 | 22 | 23       | 24 | 25  | 26    | 27   | 28    | 29    | 30    | 31    | 32   | 33    | 34   | 35   | 36 |
| WP1               | Da                                                                        | taba   | ISe | imple | eme | ntat | tation and development    |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| WP2               |                                                                           |        |     |       | D   | evel | opments of the Predictors |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| WP3               | Generation of new experimental data: structural, functional and stability |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| WP4               |                                                                           |        |     |       | G   | iene | atio                      | n o | f nev | v ex | cperim | enta    | al d | ata: | bin | ding | affi | nity | varia | tion | s. |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| WP5               |                                                                           |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    | Dat | a val | idat | ion a | and e | evalu | Jatio | n of | the j | ored | icto | rs |
| Deliverables WP1  |                                                                           |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| Deliverables WP2  |                                                                           |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| Deliverables WP3  |                                                                           |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| Deliverables WP4  |                                                                           |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| Deliverables WP5  |                                                                           |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| Meetings          |                                                                           |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| Seminars          |                                                                           |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| Dissemination     |                                                                           |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| Public Engagement |                                                                           |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |
| Reports           |                                                                           |        |     |       |     |      |                           |     |       |      |        |         |      |      |     |      |      |      |       |      |    |    |    |          |    |     |       |      |       |       |       |       |      |       |      |      |    |



## Definition of the objectives and deliverables in the light of the 38% cut