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1. Dataset influence (intrinsic to the data)

2. Biases in the DDG predictions (dependent on the method design)

3. Proper evaluation of the performance (human behaviour) 

Outline



Datasets



ProTherm is a collection of numerical data of thermodynamic parameters 
including Gibbs free energy change, enthalpy change, heat capacity change, 
transition temperature etc. for wild type and mutant proteins
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May the available experimental measures 
affect the prediction performance?



Estimation of a predictor upper 

bound



An experimental measure of 
DDG depends on several factors

• DDG = f (pH, T, salts, C_i,C_j,… ) 

• In many cases we usually talk only of DDG which is 
an average:
DDG = 𝑖 𝑗 𝑘… 𝑛∆∆𝐺(i,j,k,…n)

• Sometimes we consider the dependence of pH and T:
DDG = f (pH,T)



Problem when we compare different 
measures of the same variation
Examples

1. In Keeler et al. (2009) the variation H180A in the human prolactin (pdb
code 2Q98) measured at T=25°C, but different pH,  
DDG = 1.39 kcal/mol at pH=5.8;
DDG = -0.04 at pH=7.8
. 

2. In Gribenko and Makhatadze 2007, the variation E3R in protein 1CSP, 
6 different DDG values ranging from 1.4 kcal/mol to 2.4 kcal/mol were 
measured at the same temperature (55°C) and pH (7.5) as function of 
different salt concentrations.

3. In Ferguson and Shaw (2002) the variant L3S of the calcium-binding 
protein S100B (1UWO) measured in two different starting conditions 
and techniques, but at the same temperature (25°C) and pH (7.2) 
yielded two 
DDG = 1.91kcal/mol and 
DDG = -2.77kcal/mol



Given the dataset (𝜎𝐷𝐵) and the 

measure uncertainty () is there an 

upper bound to the prediction 

performance? 



Theoretical of estimation of an upper bound: 
a “Gedankenexperiment”

Given N protein variations, we may think to perform a set of N 

pairs of experiments ({𝑥𝑖}, {𝑦𝑖}), two for each variation.

Then we use one set of DDG measures as “predictor” and the 

other as a set of experimental measures.

The idea is that, given the experimental condition, the best 

possible predictor is another set of experimental data 

(considering the experimental uncertainty)



Theoretical estimation

The Pearson’s correlation:
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The upper bound of the Coefficient of 
determination (R2) is even lower than the 
Pearson with



Expected Pearson correlation <ρ> vs. data average uncertainty (  𝜎) for 

different values of dataset standard deviation 𝜎𝐷𝐵

• ProTherm 2.06 kcal/mol
• Varibench 1.91 kcal/mol

• S2648 1.47 kcal/mol



Experimental Datasets

From

and using the experimental data we have

• S1: Theoretical estimation with  𝜎 = 1.04 and 𝜎𝐷𝐵=1.72
=> R= 0.73

• S2: Theoretical estimation with  𝜎 = 0.72 and 𝜎𝐷𝐵=1.57
=> R= 0.83
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Simulation with the experimental Datasets

Scatterplot of two randomly
generated observations for a
given variation.

After 100 runs the Pearson
correlation are
S1-> 0.74 ± 0.02
S2 -> 0.84 ± 0.02



Multiple Mutations ?

• ProTherm 2.06 kcal/mol
• Varibench 1.91 kcal/mol

• S2648 1.47 kcal/mol



• Comparison among methods on different 
datasets

• Performance of a method on different datasets

• Evaluate method over-fitting

• Effect on multiple mutations
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Biases in DDG predictions
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DDGAB = - DDGBA 

Protein A = Protein B with variation Y25R 

Protein B = Protein A with variation R25Y

Usmanova,D.R., et al.   (2018) 



Biases in DDG predictions



Biases in DDG predictions

• The Ssym dataset is a manually curated selection of variations 

from the ProTherm database. 

• It contains mutations with experimental DDG values for which 

the 3D structures of both the wild-type and variant proteins 

were solved by X-ray crystallography. 

• Ssym consists of 684 variations, 342 are direct (reported in the 

literature) and 342 are obtained by anti-symmetry, and 

associated to the variant PDB structure



Pucci et al., 2018



<> =DDGAB+ DDGBA 



Biases in DDG predictions



Biases in DDG predictions

• dataset was built by Usmanova et al. 2018, by extracting 

high-resolution pairs of proteins from the Protein Data 

Bank (PDB) differing by one to ten amino acids.

• Large datasets, with 1000 pairs of protein structures 

differing by one residue 





Bias = (DDGAB+ DDGBA)/2



An important property that a predictor has to 

fulfil is the “variation” anti-symmetry : 

DDGAB = - DDGBA



A way to implement the predictor anti-symmetry 

is to provide in input to it only 

anti-symmetric features

DDGun: DDG Untrained baseline method



DDGun: DDG Untrained baseline method

Assuming that the profile p does not change for the mutant and the wild type 

protein sequence, we can compute some feature scores such as

Evolutionary                                                                          

(B=Blosum62)

Skolnick (𝑃𝑆𝑘)

Local potential                                                                                            

Hydrophobicity (K)

3D contact potential (𝑃𝐵𝑉)

𝑠𝐵𝑙 =  
𝑖=1
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𝑠𝐻𝑝 = 𝑝(𝑚)𝐾 𝑚 − 𝑝(𝑤)𝐾 𝑤



DDGun: DDG Untrained baseline method

Performances Anti-symmetry

Method Direct 

variations
Pearson r, RMSE

Inverse 

variations
Pearson r, RMSE

rdir-inv
Bias <δ>

(kcal/mol)

DDGun 0.48, 1.47 0.48, 1.50 -0.99 -0.007

DDGun3D 0.56, 1.42 0.53, 1.46 -0.99 -0.02

PopMusicSym 0.48, 1.58 0.48, 1.62 -0.77 0.03

SDM 0.51, 1.74 0.32, 2.28 -0.75 -0.32

Maestro 0.52, 1.36 0.32, 2.09 -0.34 -0.58

FoldX 0.63, 1.56 0.39, 2.13 -0.38, -0.47

Anti-symmetry performances of DDGun on the Ssym data 

set (Pucci et al, 2018, PopMusicSym)



DDGun: DDG Untrained baseline method

Performances Anti-symmetry

Method Direct and 

Inverse
Pearson r, RMSE

Direct variations
Pearson r, RMSE

Inverse 

variations
Pearson r, RMSE

rdir-inv
Bias <δ>
(kcal/mol)

DDGun 0.44, 2.23 0.37, 2.23 0.37, 2.23 -1.00 0.00

DDGun3D 0.45, 2.27 0.39, 2.24 0.38, 2.25 -0.99 -0.007

Maestro 0.30, 2.59 0.55, 1.96 0.08, 3.10 -0.20 -0.92

FoldX 0.44, 3.10 0.41, 2.95 0.33, 3.24 -0.71 -0.21

Performances on the 914 multiple site variation from Protherm.
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Evaluation problems:

1. many Variations in the same (similar) protein

2. many Variations in the same protein position

Classical mistake: random partition of training 

and testing sets to fit the parameters or train 

models



Problem of similarity between 

training and testing sets





The case of mCSM

(*) mCSM: predicting the effect of mutations in proteins using graph-based 

signatures

Douglas E. V. Pires, David B. Ascher, Tom L. Blundell, 2014



mCSM

(*) mCSM: predicting the effect 

of mutations in proteins using 

graph-based signatures

Douglas E. V. Pires, David B. 

Ascher, Tom L. Blundell, 2014

main paper 
results
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mCSM

Supplementary material

(*) mCSM: predicting the effect of mutations in proteins using graph-based 

signatures

Douglas E. V. Pires, David B. Ascher, Tom L. Blundell, 2014



mCSM

Summary: 
• Training-> r = 0.82
• Random split -> r = 0.73
• CV for positions -> r = 0.54
• CV for proteins -> r=0.51

(*) mCSM: predicting the effect of mutations in proteins using graph-based 

signatures

Douglas E. V. Pires, David B. Ascher, Tom L. Blundell, 2014



mCSM

Other examples with meta-predictors



Broom et al. 2017

• 60% of the proteins 

are in the training  of 

some predictors

• The Meta-predictor 

was trained on 50% 

of randomly selected 

data and tested on 

the other 50% 

(similarity issue)



• Dataset S2648 

• Data presented in:

- training on the data

- cross-validation with random split

- random generation on a “blind” set of 351 variations 

from S2648, and trained on the remainder 2297 

variants.

• Based on the output of DUET, SDM2, mCSM that were 

TOTALLY trained on S2648 

Rodrigues et al. 2018



Please: test your model using data 

(predictors) that have no sequence 

similarity (trained on proteins 

similar) to those of your test set! 
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Project:

Definition of the objectives and 

deliverables in the light of the 38% 

cut


